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Abstract 
 
In this study, we use the lattice Boltzmann method to perform 2D and 3D numerical simulations to investigate the 

electrokinetic effect on the fluid flow and mixing in a rectangular microchannel. Zeta-potential serves as the main fac-
tor representing the electrokinetic effect. The numerical simulations in particular aim at evaluation of the mixing per-
formance of two new designs of electrode distribution in the microchannel. One uses the periodically distributed rec-
tangular electrodes on lateral walls of the microchannel, for which 2D and 3D simulations were implemented with 
time-periodic application of the electric potential on the electrodes. In another model, a periodic array of trapezoidal 
electrodes with a constant electric potential on them was attached on the bottom walls, for which 3D simulation was 
carried out. Through the parametric studies for both designs, it was shown that there exists an optimum parameter value 
leading to the best mixing performance. 
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1. Introduction 

The explosive growth of interest in and the subse-
quent experimental and/or numerical studies on mi-
crofluidics have shed light on the evolution of many 
disciplines, such as the life sciences, biomedicine and 
analytical chemistry. For instance, in the processes of 
research on drug delivery, drug discovery, sample 
preparation and analysis, cell separation and detection 
and so on, applications of microfluidics increase the 
accuracy and efficiency of analysis. Within the whole 
microfluidic system like lab-on-a-chip, as a critical 
process of preparation of the reagent, samples usually 
need to be mixed as fast as possible, prior to further 
processing. However, due to the small dimensions of 
the mixers, the flow in a microfluidic system is al-
ways laminar. In this case, the fast micromixing must 
rely, first, on the stretching/folding of fluid blobs 

usually through the chaotic advection, and secondly 
on the molecular diffusion across the lengthened in-
terfaces. In this context, the most important issue for 
the enhancement of the micromixing is how to elabo-
rate fluid flows that lead to chaotic advection; in fact, 
the total time needed for complete mixing is domi-
nated by the time consumed in stretching the inter-
faces, and so the vital importance is how to make the 
interfaces elongated as quickly as possible. 

Various mechanisms have been used to improve 
micromixing. Pressure or electrokinetically driven 
lamination and repeated splitting/rejoining of the inlet 
streams help to increase the contact surface between 
two fluids [1-5]. Fabricating specific geometry like 
grooves or ribs [6, 7], micromachined stirrer [8] or 
obstacles [9] in the microchannel can stimulate cha-
otic advection. Even a droplet of liquid has been used 
as a mixer by itself [10]. References [11, 12] demon-
strate that mixing enhancement can be realized by 
using unsteady pressure perturbations to generate 
pulsating flows. Temperature disturbance or the 
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variation of diffusion coefficient has been known to 
give an edge to micromixing [13]. The electrohydro-
dynamical method, first proposed by Tsouris et al. 
[14] and Moctar et al. [15], is based on the fact that 
when two fluids having different electrical properties 
(e.g., conductivity and permittivity) are subjected to 
an electric field, it exerts different electric forces on 
the two fluids to make the interfaces stretched and 
folded to realize fluidic mixing. Dielectrophoretics 
was also employed in mixing of particles [16, 17]. 
Magnetohydrodynamics [18-20], acoustics [21, 22] 
and centrifugal forces [23] are also applicable under 
specific conditions. Among others, the electrokinetic 
method, due to its several advantages, is one of the 
more popular mechanisms employed in micromixing. 
The advantages include ease of integrating electronic 
control modules to microfluidic systems and feasibil-
ity of providing power to drive fluid flow, and simul-
taneously, to create mixing with just simple geome-
tries. In this work, we also employed this facile tool to 
generate efficient micromixing. 

In the literature, numerous research reports on em-
ploying electoosmotic flow as a tool for mixing are 
available for reference. Jacobson et al. [24] studied 
parallel and serial lamination mixers driven by a sin-
gle voltage source control. Stroock et al. [25] first 
exposed the effect, on mixing, of the patterned sur-
face charge used to induce heterogeneous surface 
zeta-potential in a three-dimensional channel. The 
spatially periodic strips of surface charge subjected to 
an external electric field applied along the longitudi-
nal direction of the channel were shown to give rise to 
multidirectional or circulating cellular electro-osmotic 
flows. Oddy et al. [26] contrived a batch mixer of 
cavity shape and demonstrated that the flow instabil-
ity, occurring when an AC voltage is actuated through 
the cavity, is responsible for the efficient mixing. 
Qian and Bau [27, 28] designed chaotic electro-
osmotic mixers and applied a numerical method to 
analyze the model. They derived analytical solutions 
for the simplified two-dimensional cavity models 
with the aid of Fourier series and superposition prin-
ciple. In their model, heterogeneous zeta-potentials 
are applied on the top and bottom walls so that the 
induced steady as well as unsteady flows give rise to 
chaotic mixing. Erickson and Li [29] numerically 
investigated enhancement of mixing in a three-
dimensional T-shape microchannel by introducing 
heterogeneous surface zeta-potential. They studied 
the mixing behavior by implementing 3D finite-

element simulations. Chang and Yang [30] presented 
a 2D numerical simulation of steady electro-osmotic 
flows in microchannels with rectangular blocks at-
tached to the upper and lower walls. Heterogeneous 
surface zeta-potential is induced on the top surface of 
the rectangular blocks as well as the channel wall. 
However, the geometry is complex, and a chaotic 
mixing pattern such as stretching and folding did not 
take place. Wu and Liu [31] proposed a T-shaped 
microchannel mixer. On the bottom wall of the chan-
nel, they embedded an electrode array composed of a 
series of asymmetric-herringbone electrodes. The 
induced zeta-potential’s temporal modulation was 
realized by applying AC voltage, while the spatial 
modulation was facilitated by the asymmetric-
herringbone-electrode structure. Using numerical 
simulation as well as experiment, they demonstrated 
that great mixing efficiency could be achieved from 
their mixers. Pacheco et al. [32] proposed a design in 
which the surface zeta-potentials on the top and the 
bottom walls are maintained at constant values. In 
addition to the steady electric field along the longitu-
dinal direction, which drives the primary flow, a sec-
ondary time-dependent external electric field was 
applied transverse to the flow by alternatively switch-
ing on and off the applied DC voltages on electrodes 
attached to the side walls.  

Illuminated by the previous researchers’ efforts, we 
in this study sought more elaborate designs in the 
distribution of surface charges to enhance micromix-
ing. Specifically, we propose two kinds of rectangular 
microchannel with heterogeneous zeta-potentials on 
the channel walls subjected to a uniform longitudinal 
external electric field. In the first micromixer design, 
rectangular electrodes are periodically embedded on 
the surface of the lateral walls. We use AC voltage to 
control the electrodes, thus leading to temporally 
periodic change of the surface zeta-potential on the 
electrodes. Due to not only the uniform electric filed 
but also the spatial and temporal periodic altering of 
the zeta-potentials on the channel side walls, there 
occurs secondary, oscillatory flow in addition to the 
primary, steady flow. As the second design, trapezoi-
dal electrodes are embedded on the bottom wall of the 
channel. We apply DC voltage on the electrodes, so 
that the surface charge value remains constant. As a 
result of such an arrangement, a spatially periodic 
distribution of heterogeneous zeta-potential plus a 
uniform external electric field actuates steady asym-
metric cross-flows inside the microchannel. These 
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multidirectional flows are expected to be greatly 
beneficial to the micromixing.  

Regarding the numerical tool for the analysis, we 
applied LBM, which has been demonstrated in many 
research works to be simple, accurate and efficient for 
analysis of a variety of fluidic applications. There are 
several good references discussing the application of 
LBM to electro-osmotic flows in microfluidic chan-
nels [33, 34] and micromixing in electro-osmotic 
flows [35, 36]. In Tian et al.’s paper, two-dimensional 
electro-osmotic flow in microchannels with non-
uniform surface zeta-potentials was investigated by 
LBM. They solved the Poisson-Boltzmann equation 
for electric potential and ion distribution, while the 
mixing process was assessed only by streamlines.  

In order to reduce the cost and difficulty of analysis, 
we applied the steady electro-osmotic slip velocity 
calculated from the Helmholtz-Smoluchowski equa-
tion [37] assuming that the zeta-potential is directly 
related to the applied slip velocity value. In this way, 
not only can we conveniently apply LBM to analysis 
of the fluid flow and its mixing process but also pay 
more attention to the mixing behavior inside the three 
dimensional microchannel mixers and to the en-
hancement of mixing efficiency. The enhancement of 
mixing in our model is affected by several factors 
including geometry of the electrodes themselves as 
well as the spacing between electrodes and the magni-
tude and temporal modulation of the zeta-potential on 
the electrodes, etc. So, we carried out a parameter 
study in order to pursue an optimum parameter set 
leading to the best mixing performance. 

The rest of this paper is organized as follows. Sec-
tion 2 describes the geometry of two new kinds of 
rectangular microchannel mixer. Section 3 presents 
the framework of the lattice Boltzmann method ap-
plied and the quantitative evaluation method for the 
mixing performance. We provide the simulation re-
sults and discussions in section 4 and give conclu-
sions in the last section. 
 

2. Microchannel flow models 

2.1 2D and 3D time-periodic flows 

The first design proposal as a model for a mixer is 
composed of a rectangular microchannel with rectan-
gular electrodes embedded on the side walls as shown 
in Fig. 1. When a steady electric field E  is applied 
in the electrolyte within the channel along the longi-

tudinal (X-) direction, due to the electrokinetic forces 
acting on the clustered (usually positive) ions in the 
EDL (electric double layer) very near the channel 
walls, the whole fluid moves downstream with uni-
form velocity profile across the channel, which is 
called ‘electro-osmosis’. The velocity determined at 
the interface between the EDL and the bulk region is 
called slip velocity [38]. Since the thickness of EDL 
is usually very small (10A 100A− ) compared with 
the channel space, we do not take into account the 
detailed flow behavior within EDL, and we use the 
slip velocity as the boundary condition on the wall in 
describing the bulk fluid flows. On the other hand, 
alternating current with a relatively low frequency is 
applied to the electrodes, so that the zeta-potential on 
the electrodes is modulated in time. As shown in Fig. 
1, such an arrangement gives rise to a steady flow 
driven by the slip velocity *

0U  on the normal wall 
surface plus the oscillatory flow driven by the time-  

 

 
 
Fig. 1. Perspective view of microchannel with periodically 
distributed rectangular electrodes representing the first chan-
nel design in this study. 

 

  
Fig. 2. Simplified 2D microchannel model of Fig. 1. 
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periodic application of the electric potential on the 
electrodes. If the channel height is large enough, then 
2D calculation is relevant; the simplified 2D model is 
demonstrated in Fig. 2. 

With an electric field E  and zeta-potential ζ , 
the electro-osmotic velocity *U , also known as the 
slip velocity, can be calculated by using the Helm-
holtz-Smoluchowski Eq. [38]: 

0*U Eγε ε
ζ

µ
= −     (1) 

Here, rε  is the dielectric constant of the fluid, 0ε  
the permittivity of vacuum, µ  the dynamic viscosity 
of the fluid. Whereas the zeta-potential on the normal 
walls is maintained at a constant value say Nζ ζ= , 
those on the electrodes are modulated in time by ap-
plication of alternating voltages. This will make the 
slip velocity also change periodically. The slip veloc-
ity on the normal wall, i.e., *

0U , is calculated by ap-
plying Nζ ζ=  to Eq. (1). 

Prior to the LBM simulation, we convert *
0U  in 

the physical unit into 0U  in the lattice unit by using 
a reference velocity *c , which is called speed of 
sound and calculated by * */x tδ δ , where *xδ  is the 
size of the lattice and *tδ  is the time step for one 
complete cycle of calculation; * *

0 0 /U U c= . The ve-
locities on the electrode walls of the microchannel 
can be given in the lattice unit as follows.  

( )2
01 cos /f fU t T Uγ π⎡ ⎤= −⎣ ⎦  

on the front electrodes,  (2a) 

( )2
01 sin /r rU t T Uγ π⎡ ⎤= −⎣ ⎦   

on the rear electrodes,  (2b) 

where T  is the time period of zeta-potential modu-
lation on the electrodes and fγ  and rγ  the relative 
magnitude of zeta-potential on the front and rear elec-
trodes adjustable by the applied voltages, respectively, 
referring to that of the normal wall. We define, for a 
positive constant n , 0T nT= , where 0 0/hT D U=  
is the characteristic time scale and hD  the hydraulic 
diameter of the channel’s cross section; all are in the 
lattice unit. As per the main purpose of this study, we 
aim to find an optimum value of n  that yields the 
best mixing performance. In proposing the modula-
tion of the slip velocity by Eqs. (2a) and (2b), we 
assume that the zeta potential on the electrode surface 
can be controlled without difficulty by adjusting the 
applied voltage in time; of course, controlling such 
zeta potential may require a sophisticated structure in 

 
 
Fig. 3. Perspective view of the microchannel with periodi-
cally distributed trapezoidal electrodes on the bottom wall. 

 
practice. 

 
2.2 3D steady flows 

In the second channel design, the microchannel has 
a periodic array of trapezoidal electrodes on the bot-
tom wall (Fig. 3). Such an arrangement turns out to 
generate a cross flow. The slip velocity on the normal 
wall is the same as in Eq. (1) and the velocity on the 
electrode walls is given as follows. 

0b bU Uγ=      on the bottom electrodes,  (3) 

As implied in the boundary condition Eq. (3), the 
electric potential is applied on the electrodes with DC. 
The constant bγ  represents the relative magnitude 
of the potential on the electrodes. 
 

3. Numerical method 

In the LBM approach, one solves the kinetic equa-
tion for the particle velocity distribution function f . 
The macroscopic quantities (such as mass density ρ  
and momentum density ρu ) can then be obtained by 
evaluating the hydrodynamic moments of the distri-
bution function. There are several models for LBM 
currently in use to simulate fluid problems. In the 
present simulation, we applied the most popular, 
Bhatnagher-Gross-Krook (BGK) collision operator 
[39], and adopted the modified equilibrium distribu-
tion function, which was proposed by He and Luo 
[40] for incompressible flow. The distribution func-
tion is determined by the following evolution equa-
tion. 

( ) ( ) ( )

( )

1, , ,

,eq

f t t t f t f t

f t

α α α α

α

δ δ
τ

+ + − = − ⎡⎣

⎤− ⎦

x e x x

x
  (4) 



 J. Kang et al. / Journal of Mechanical Science and Technology 22 (2008) 1181~1191 1185 
 

  
 
Fig. 4. Discrete velocity vectors for D2Q9 (left hand side) 
and D3Q19 (right hand side) lattice. 

 
In the above evolution equations, 3 0.5τ ν= +  is 

the dimensionless relaxation time, ν  the kinetic 
viscosity, x  the grid point coordinate, tδ  the time 
step, fα  the distribution function, and eqfα  the 
equilibrium distribution function in the α − th direc-
tion to be given by 

( )

2
0 2 4

2

1 1 ( )
2

1
2

eq

s s

s

f
c c

c

α α α αω ρ ρ
⎧ ⎡⎪= + ⋅ + ⋅⎨ ⎢
⎪ ⎣⎩

⎫⎤⎪− ⋅ ⎬⎥
⎪⎦⎭

e u e u

u u

  (5) 

where u  is the macroscopic velocity, ρ  the den-
sity of fluid, αω  the weighting coefficient, and αe  
denotes the discrete velocity vectors, which are 
shown in Fig. 4 for two-dimensional nine-velocity 
lattice model (D2Q9) and three-dimensional nineteen-
velocity lattice model (D3Q19). sc  is the sound 
speed depending on the specific choice of discrete 
velocity αe , here, 1/ 3sc = . 

The weighting coefficients for D2Q9 are: 
4 /9αω =  for 0α =  , 1/9αω =  for 1,2,3,4α = , 

and 1/ 36αω =  for 5,6,7,8α = . For D3Q19, they 
are: 1/3αω =  for 0α = , 1/18αω =  for 

1,2, ,6α = ⋅ ⋅ ⋅ , and 1/ 36αω =  for 7,8, ,18α = ⋅ ⋅ ⋅ . 
The fluid density and momentum are evaluated by 

the following formulas: 

fα
α

ρ =∑       (6) 

fα α
α

ρ =∑u e     (7) 

To evaluate the mixing performance, we numeri-
cally simulated the concentration transport of species. 
In general, species are transported by convection and 
diffusion. We assume that the species transport is 
passive. The proposed evolution equation for the 
transport of the species i  has the following form [36, 

41]. 

( ) ( ) ( )

( ),

1, , ,

,

i i i

i

i eq

g t t t g t g t

g t

α α α α

α

δ δ
τ
⎡+ + − =− ⎣

⎤− ⎦

X e X X

X
   (8) 

where 3 0.5i iDτ = +  is the dimensionless relaxation 
time for the calculation of concentration, iD  the 
diffusivity, igα  the distribution function of the con-
centration along the α − th direction, and ,i eqgα  the 
equilibrium distribution function given as 

( )

( )

2,
2 4

2

1 11
2

1
2

i eq
i

s s

s

g c
c c

c

α α α αω
⎡

= + ⋅ + ⋅⎢
⎢⎣
⎤

− ⋅ ⎥
⎥⎦

e u e u

u u

   (9) 

Similar to Eq. (6), ic , the concentration of species 
i , is calculated by using: 

i
ic gα

α
=∑   (10) 

In order to evaluate the quantitative effect of mix-
ing, the mixing index, which has already been used 
by previous researchers [42, 43], is employed: 

( )( )2
,

1 1 , /
N

i j
D c i j c

N
= −∑    (11) 

where, ( , )c i j  is the concentration on the node ( , )i j , 
c  the spatial average of concentration for the whole 
fluid domain, and N  the total number of grid points, 
i.e. N I J= × . A lower mixing index indicates a 
better mixing effect.  
 

4. Numerical results and discussions 

4.1 2D and 3D time-periodic flows 

First, we present the 2D numerical results obtained 
for the microchannel depicted in Fig. 2. The number 
of grids is fixed at 200 100× , the Reynolds number 

0Re /U L ν=  at 0.8, and the slip velocity on the wall 
at 0 0.005U = . Since the length scale for 2D case is 

100L = , we get the viscosity 0.625ν = . Then, τ  
the relaxation time in the equation for the particle 
distribution function f  becomes 2.375 . The Peclet 
number, 0Pe / iU L D= , is fixed at 4Pe 1 10= × , from 
which we can compute the diffusivity iD . This in 
turn gives 3 0.5 0.50015i iDτ = + = . The magnitude 
of iτ  influences the stability of the LBM simulation,  
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           1.5f rγ γ= =                     2f rγ γ= =  

  
                3f rγ γ= =                   7f rγ γ= =  

 
Fig. 5. Instantaneous streamlines of the 2D time-periodic 
flow at 0t =  with four different values of fγ  and rγ . 

 
implying that there is a high limit of Pe  we can use. 
But, fortunately in 2D case, the stability is not so sen-
sitive to Pe . As the boundary condition for f  and 
g , we employed extrapolation schemes [44]. For f , 
we applied the velocity 0 0.005U =  to the normal 
walls and fU  and rU  given by (2a) and (2b) to the 
electrodes. Zero flux condition was applied for g . A 
periodic boundary condition was used at upstream 
and downstream ends of the channel. 

Fig. 5 shows the streamlines of the basic flows at 
various values of fγ  and rγ . The basic flow is 
composed of the primary, uniform flow and the back 
flow driven locally by the electrodes. As a result, the 
region adjacent to the electrodes is occupied by a 
recirculating cell. As the zeta-potential is increased, 
the size of the cell also increases. It turns out that in 
general the mixing is enhanced when the magnitudes 
of fγ  and rγ  are larger. However, such a setup 
leads to a lower flow rate, and so we must compro-
mise between the mixing effect and the flow rate. 

We will show in the following the numerical results 
of the parametric study. In the first part of this study, 
we fixed 2f rγ γ= =  and investigated the mixing 
performance under the influence of other factors. 

Evolution of the concentration patterns is shown 
typically at 03T T=  in Fig. 6; the figure shows the 
patterns after some multiple of periods. The grey 
scale in the figures indicates the magnitude of the 
concentration ( , )c i j . The initial concentration is set 
as 0 ( , ) 1c i j =  for the front half of the domain (in the 
figure ‘bottom’ half) and 0 ( , ) 0c i j =  for the rear half 
(‘top’ half); here “front” and “rear” are used to be 
consistent with the 3D case. Apparently, there occurs 
chaotic mixing demonstrated by the stretching and 
folding of passive materials. Also, we can see that the 
patterns tend to a steady structure called ‘invariant  

  

        t=0(initial condition)                 t=1T  

  

                               t=2T                                  t=3T  

  

                    t=5T                     t=8T  

 
 
Fig. 6. Time evolution of the concentration distribution for 
2D time-periodic flow ( Re 0.8= , Pe 10,000= , 0T 3T= , 

2f rγ γ= = ). 

 
manifold’. It also shows a gradual approach to a uni-
form concentration with 0 1/ 2c =  implying good 
mixing. 

As is common for most time-periodic flows, the 
modulation period T  is expected to be the most 
important parameter regarding optimization for the 
best mixing. So, simulation is performed to inves-
tigate the effect of T  on the mixing index. Here 
again the relative magnitude of the zeta-potentials 
on the electrodes is fixed at 2f rγ γ= = . In Fig. 7, 
we show time evolutions of mixing indices for 
various values of .T  Mixing performance appears 
to be sensitive to ,T  and more importantly its 
effect is not monotonic implying that there exists 
an optimum value of T  that leads to the best ef-
fect. In this graph, we see that the mixing index is 
the lowest with 03T T=  at the final time 050t T= . 
The values of mixing index D  at 050t T=  for 
various T  values are plotted in Fig. 8. We obvi-
ously find that the mixing index is smallest at 

03T T=  
We also simulated this 2D problem using a finite 

volume method (FVM) with standard schemes 
such as centered difference for the spatial discreti- 
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Fig. 7. Evolution of mixing indices for different T  for 2D 
time-periodic flow ( Re 0.8= , Pe 10,000= , 2f rr r= = ). 

 

 
 
Fig. 8. Variation of mixing indices at 050t T=  for different 
T  for 2D time-periodic flow ( Re 0.8,= Pe 10,000,= fγ =  

2rγ = ). 

 

 
 
Fig. 9. Comparison of mixing indices obtained by FVM and 
LBM for 012T T=  with different grid numbers for 2D time-
periodic flow. 

zation and incomplete Cholesky conjugate gradient 
method for the pressure, etc. We compared the 
mixing index obtained by LBM with that by FVM. 
Fig. 9 shows the comparison for a typical parame-
ter set 012T T=  and Pe 10,000= . Overall, the two 
results are in a good agreement, so we can judge 
that our LBM code is reliable. 

For 3D time-periodic flows, we carried out a 
simulation under the following conditions. The 
number of grids is set at 56 28 84× × , the Reynolds 
number at Re 2= , the slip velocity on the wall at 

0 0.02U = , viscosity at 0.42ν = , and hydraulic 
diameter at 42hD = . Then these give the relaxa-
tion time of the evolution of the particle distribu-
tion function f  as 1.76τ = . As the boundary 
condition for f , we applied the extrapolation 
scheme as done with the 2D simulation, and for 
g  we applied the no-flux condition following the 
simplest method as described by Succi [45]. It 
turned out that the 3D LBM algorithm was more 
sensitive to the Peclet number with respect to the 
numerical stability than 2D; so, we set Pe 4750=  
as the upper limit of the stable calculation. 

We display in Fig. 10 the calculated concentration 
patterns on the central plane / 2Z H=  at 03T T= ,  

 

  

        t=0(initial condition)                     t=1T  

  

                  t=2T                  t=3T  

  
                  t=5T                     t=8T  

  
Fig. 10. Time evolution of the concentration patterns on the 
XY plane at / 2Z H=  for 3D time-periodic flow. ( 03T T= , 
Re 2= , Pe 4750= , 2f rγ γ= = ) 
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Fig. 11. Mixing indices with different T  for 3D time-
periodic flow ( Re 2= , Pe 4750= , 2f rγ γ= = ). 
 

 
 
Fig. 12. Variation of mixing indices for different T  for 3D 
time-periodic flow at 0t=32 T  ( Re 2,= Pe 4750,=  fγ =  

2rγ = ). 
 
where H  denotes the total height of the channel. 
Except for the initial development, the asymptotic 
striation patterns look similar to the ones obtained for 
2D case, i.e., Fig. 6. This is plausible because the 
channel is set high enough that the end-wall effect 
becomes less significant. On the other hand, the 3D 
case shows more rapid dispersion than 2D. This is 
also relevant because Pe is set much smaller than 2D. 
On the other hand, rather coarser grids used in 3D 
calculation may be another factor causing such rapid 
dispersion. 

Fig. 11 shows the time evolution of mixing indices 
for various dT  values. This figure reveals a faster 
increase of D  than the 2D case, i.e., Fig. 7, espe-
cially in the early time of the concentration dispersion. 

This indicates that the dispersion in the early time is 
governed by diffusion rather than advection. We also 
see that, like the previous 2D case, there may exist an 
optimum T  value for the best mixing performance. 
Fig. 12 indicates that the optimum value is 04T T= . 
This value is a little bit different from the result of the 
2D simulation, 03T T= . Moreover, dependence of 
D  on the T  value for the 3D case is not as signifi-
cant as the 2D case. The discrepancy between the 2D 
and 3D results is obviously due to the difference in 
the Peclet number and the end-wall effects. Neverthe-
less, because applying the 2D model can simplify the 
numerical calculation and reduce the time cost by 
almost 10 times, employing such a periodical and 
symmetrical model using 2D simplification is benefi-
cial. 

 
4.2 3D steady flows 

We now present the simulation results of the fluid 
flow and mixing process of the 3D steady flow model. 
As the steady slip velocity on the trapezoidal elec-
trodes, we applied the magnitude calculated from (3). 
In the parameter study, the effect of bγ  on the mix-
ing is investigated. The fluid space is discretized by a 
154 77 28× ×  grid system. We set Reynolds number 
at Re 2= , the slip velocity at 0 0.025U = , the vis-
cosity at 0.513ν =  and the hydraulic diameter at 

41.07hD = . The relaxation time of the particle distri-
bution function f  is computed as 2.04τ = . When 
we used the bounce-back scheme as the boundary 
condition for g , we experienced some wiggles near 
the boundaries. Further, applying an extrapolation 
scheme to f  and g  simultaneously gives rise to 
stability problem at high Peclet numbers. Therefore, 
there is a bottleneck of Pe . In the present calculation, 
we fixed Pe=237 . The concentration distribution 
patterns on the XY section at the height of / 3Z H=  
are demonstrated in Fig. 13. 

The patterns on the left hand side column corre-
spond to the LBM results, whereas the right hand side 
to the numerical results calculated by the commercial 
code CFX under the same conditions. Comparison of 
the two results shows good agreement. From Fig. 14 
and 15 showing the mixing indices with different 
magnitude bγ , we can see that the mixing is best 
when the magnitude of slip velocity on the electrodes 
is given 3bγ = − . Fig. 16 shows the effect of bγ  on 
the flow rate. At 3bγ = − , in which the best mixing is 
attained, the flow rate is reduced to 1/ 3  of that with  
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Fig. 13. Time evolution of the concentration distribution on 
the plane / 3Z H=  for 3D steady flow at 2bγ = − : L-H-S 
patterns are obtained by LBM; R-H-S patterns are calculated 
by CFX ( Re 2= , Pe 237= ). 

 
the case of simple channel flow ( 1bγ = ). Here again, 
the channel designer must compromise between the 
mixing effect and the fluid transport. 
 

5. Conclusions 

We gave out two new designs of a microchannel 
mixer with delicate distributed electrodes on the 
channel wall to generate heterogeneous zeta-potential, 
which is demonstrated to give rise to an effective 
enhancement of micro fluidic mixing. We applied 
LBM to simulate both fluid flow and its mixing proc-
ess and carried out a parameter study to investigate 

the relationship between mixing performance and the 
impact factors including relative magnitude and 
modulation period of the zeta-potential on the elec-
trodes. The concentration patterns at different 
timesteps and the mixing indices lead us to clear rec-
ognition of the chaotic mixing behavior and mixing 
quality. We found optimized values for the best mix-
ing performance through the parameter studies. 
 

Acknowledgments 

This work was supported by the Korea Science and 
Engineering Foundation(KOSEF) through the Na-
tional Research Laboratory Program funded by the 
Ministry of Science and Technology (No. 2005-1091). 
 

References 

[1] F. G. Bessoth, A. J. DeMello and A. Manz, Micro-
structure for efficient continuous flow mixing, Anal. 
Commun., 36 (1999) 213-215.  

[2] B. L. Gray, D. Jaeggi, N. J. Mourlas, B. P. van 
Drieenhuizen, K. R. Williams, N. I. Maluf and G. T. 
A. Kovacs, Novel interconnection technologies for 
integrated microfluidic systems, Sensors and Actua-
tors(A), 77 (1999) 57-65. 

[3] V. Mengeaud, J. Josserand and H. H. Girault, Mix-
ing processes in a zigzag microchannel: Finite ele-
ment simulation and optical study, Anal. Chem., 74 
(2002) 4279-4286. 

[4] M. S. Munson and P. Yager, Simple quantitative 
optical method for monitoring the extent of mixing 
applied to a novel microfluidic mixer, Anal. Chim. 
Acta., 507 (2004) 63-71. 

[5] D. S. Kim, S. H. Lee, T. H. Kwon and C. H. Ahn, A 
serpentine laminating micromixer combining split-
ting/recombination and advection, Lab Chip, 5 
(2005) 739-747. 

[6] A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. 
Mezic, H. A. Stone and G. M. Whitesides, Chaotic 
mixer for microchannels, Science, 295 (2002) 647-
651. 

[7] L. H. Lu, K. S. Ryu and C. Liu, A magnetic mi-
crostirrer and array for microfluidic mixing, J. 
MEMS, 11(5) (2002) 462-469. 

[8] H. Wang, P. Lovenitti, E. Harvey and S. Masood, 
Optimizing layout of obstacles for enhanced mixing 
in microchannels, Smart Mater. Struct., 11 (2002) 
662-667. 

[9] P. B. Howell Jr., D. R. Mott, S. Fertig, C. R. Kaplan, 



1190  J. Kang et al. / Journal of Mechanical Science and Technology 22 (2008) 1181~1191 
 

J. P. Golden, E. S. Oran and F. S. Ligler, A micro-
fluidic mixer grooves placed on the top and bottom 
of the channel, Lab Chip, 5 (2005) 524-530. 

[10]  H. Song, M. R. Bringer, J. D. Tice and C. J. Gerdts, 
Experimental test of scaling of mixing by chaotic 
advection in droplets moving through microfluidic 
channels, Appl. Phys. Lett., 83 (2003) 4664-4666. 

[11]  T. Fujii, Y. Sando, K. Higashino and Y. Fujii, A 
plug and play microfluidic device, Lab Chip, 3 
(2003) 193-197. 

[12]  N. Z. Niu and Y. K. Lee, Efficient spatial-temporal 
chaotic mixing in microchannels, J. Micromech. 
Microeng., 13 (2003) 454-462. 

[13]  N. T. Nguyen and Z. Wu, Micromixers-a review, J. 
Micromech. Microeng., 15 (2005) R1-R16. 

[14]  C. Tsouris, C. T. Culbertson, D. W. DePaoli, S. C. 
Jacobson, V. F. de Almeida and J. M. Ramsey, 
Electrohydrodynamic mixing in microchannels, 
AIChE J., 49(8) (2003) 2181-2186. 

[15]  A. O. E. Moctar, N. Aubry and J. Batton, Electro-
hydrodynamic micro-fluidic mixer, Lab Chip, 3 (4) 
(2003) 273-280. 

[16]  Y. K. Lee, J. Deval, P. Tabeling and C. M. Ho, 
Chaotic mixing in electrokinetically and pressure 
driven micro flows, The 14th IEEE Workshop on 
MEMS, (2001) 483-486. 

[17]  J. Deval, P. Tabeling and C. M. Ho, A dielectro-
phoretic chaotic mixer, Proc. MEMS’02, 15th IEEE 
Int. Workshop, (2002) 36-39. 

[18]  H. Suzuki and C. M. Ho, A magnetic force driven 
chaotic micro-mixer, Proc 15th IEEE Int. Conf. on 
Micro Electro Mechanical Systems(C), Las Vegas, 
(2002) 40-43. 

[19]  H. H. Bau J. Zhong and M. Yi, A minute magneto 
hydrodynamic (MHD) mixer, Sensors and Actua-
tors(B), 79 (2001) 207-215. 

[20]  S. Qian, J. Zhu and H. H. Bau, A stirrer for magne-
tohydrodynamically controlled minute fluidic net-
works, Phys. Fluids, 14(10) (2002) 3584-3592. 

[21]  K. Yasuda, Non-destructive, Non-contact handling 
method for biomaterials in micro-chamber by ultra-
sound, Sensors and Actuators (B), 64 (2000) 128-
135. 

[22]  G. G. Yaralioglu, I. O. Wygant, T. C. Marentis and 
B. T. Kburi-Yakub, Ultrasonic mixing in microflu-
idic channels using integrated transducers, Anal. 
Chem., 76 (2004) 3694-3698. 

[23]  M. G. A. Geipel, R. R. Zengerle and J. Ducree, 
Batch-mode mixing on centrifugal microfluidic 
platforms, Lab Chip, 5 (2005) 560-565. 

[24]  S. C. Jacobson, T. E. Mcknight and J. M. Ramsey, 
Microfluidic devices for electrokinetically driven 
parallel and serial mixing, Anal. Chem., 71 (1999) 
4455-4459. 

[25]  A. D. Stroock, M. Weck, D. T. Chiu, W. T. S. 
Huck, P. J. A. Kenis, R. F. Ismagilov and G. M. 
Whitesides, Patterning electro-osmotic flow with 
patterned surface charge, Phys. Rev. Lett., 84 (15) 
(2000) 3314-3317. 

[26]  M. H. Oddy, J. G. Santiago and J. C. Mikkelsen, 
Electrokinetic instability micromixing, Anal. Chem., 
73 (2001) 5822-5832. 

[27]  S. Qian and H. H. Bau, A Chaotic electroosmotic 
stirrer, Anal. Chem., 74 (2002) 3616-3625. 

[28]  S. Qian and H. H. Bau, Theoretical investigation of 
electro-osmotic flows and chaotic stirring in rectan-
gular cavities, Appl. Math. Modelling, 29(8) (2005) 
726-753. 

[29]  D. Erickson and D. Li, Influence of surface hetero-
geneity on electrokinetically driven microfluidic 
mixing, Langmuir, 18 (2002) 1883-1892. 

[30]  C. C. Chang and R. J. Yang, Computational analy-
sis of electrokinetically driven flow mixing in mi-
crochannels with patterned blocks, J. Micromech. 
Microeng., 14 (2004) 550-558. 

[31]  H. Y. Wu and C. H. Liu, A novel electrokinetic 
micromixer, Sensors and Actuators (A), 118 (2005) 
107-115. 

[32]  J. R. Pacheco, K. P. Chen and M. A. Hayes, Rapid 
and efficient mixing in a slip-driven three-dimen-
sional flow in a rectangular channel, Fluid Dynam-
ics Research, 38 (2006) 503-521. 

[33]  D. Hlushkou, D. Kandhai and U. Tallarek, Coupled 
lattice-Boltzmann and finite-difference simulation 
of electroosmosis in microfluidic channels, Int. J. 
Numer. Meth. Fluids, 46 (2004) 507-532. 

[34]  J. K. Wang, M. Wang and Z. Li, Lattice Poisson-
Boltzmann simulations of electro-osmotic flows in 
microchannels, J. Colloid Interface Sci., 296 (2006) 
729-736. 

[35]  F. Tian, B. Li and D. Y. Kwok, Tradeoff between 
mixing and transport for electroosmotic flow in het-
erogeneous microchannels with nonuniform surface 
potentials, Langmuir, 21 (2005) 1126-1131. 

[36]  J. Wang, M. Wang and Z. Li, Lattice Boltzmann 
simulations of mixing enhancement by the electro-
osmotic flow in microchannels, Modern Physics 
Letters B, 19 (2005) 1515-1518. 

[37]  R. F. Probstein, Physicochemical Hydrodynamics: 
An Introduction (2nd Ed.), New York: Wiley and 



 J. Kang et al. / Journal of Mechanical Science and Technology 22 (2008) 1181~1191 1191 
 

Sons, Inc., (1994). 
[38]  D. Li, Electrokinetics in Microfluidics, Elsevier 

Academic Press, (2004) 110-120. 
[39]  Y. H. Qian, D. D’Humieres and P. Lallemand, 

Lattice BGK models for Navier-Stokes equation, 
Europhys. Lett., 17 (1992) 479-484 . 

[40]  X. He and L. Luo, Lattice Boltzmann model for the 
incompressible Navier-Stokes equation, J. Stat. 
Phys., 88 (1997) 927-944. 

[41]  A. Cali, S. Succi, A. Cancelliere, R. Benzi and M. 
Gramignani, Diffusion and hydrodynamic disper-
sion with the lattice Boltzmann method, Phys. Rev., 
A 45 (1992) 5771-5774. 

[42]  Y. K. Suh, On the problem of using mixing index 
based on the concentration dispersion, Trans. 
KSME(B), 30 (2006) 796-805. 

[43]  Y. Kim, S. J. An and J. Maeng, The effect of Kar-
man vortex for mixing in a micro-channel with an 
oscillating micro-stirrer, Trans. KSME(B), 30 (2) 
(2006) 144-152. 

[44]  Z. Guo, C. Zheng and B. Shi, An extrapolation 
method for boundary condition in lattice Boltzmann 
method, Phys. Fluids, 14 (6) (2002) 2007-2010. 

[45]  S. Succi, The Lattice Boltzmann Equation for Fluid 
Dynamics and Beyond, Oxford: Clarendon Press, 
(2001) 84-87. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


